AllAboutShale.com

A rock physics model for the characterization of organic-rich shale from elastic properties

Ying Li1  •  Zhi-Qi Guo2  •  Cai Liu2  •  Xiang-Yang  Li3,4   •  Gang Wang1

 

 

 

1College of Computer Science and Technology, Jilin University, Changchun 130012, Jilin, China

2College of Geo-Exploration Science and Technology, Jilin University, Changchun 130026, Jilin, China

3British Geological Survey, Edinburgh EH9 3LA, UK

4CNPC Key Laboratory of Geophysical Prospecting, China University  of  Petroleum,  Beijing  102249,  China

Abstract

 

 

Kerogen content and kerogen porosity play a significant role in elastic properties of organic-rich shales. We construct a rock physics model for organic-rich shales to quantify the effect of kerogen content and kerogen porosity using the Kuster and Tokso z theory and the self-consistent approximation method. Rock physics modeling results show that with the increase of kerogen content and kerogen-related porosity, the velocity and density of shales decrease, and the effect of kerogen porosity becomes more obvious only for higher kerogen content. We also find that the Poisson’s ratio of the shale is not sensitive to kerogen porosity for the  case  of  gas saturation.  Finally, for  the seismic reflection responses of an organic-rich shale layer, forward modeling results indicate the fifth type AVO responses which correspond to a negative intercept and a positive gradient. The absolute values of intercept and gradient increase with kerogen content and kerogen porosity, and present predictable variations associated with velocities and density.

 

 

1 Introduction

 

 

Recently, research on shale reservoirs has become more important in China (Liu et al. 2009; Liu et al. 2011; Zou et al. 2011; Cheng et al. 2013; Chen et al. 2013a; Chen et  al.  2013b; Diao 2013; Wang et  al.  2013). However, exploration and exploitation of shale  reservoirs requires deeper  understanding of  rock physics relations  between reservoir properties and elastic parameters in shales. Compared to rock physics models for conventional reservoirs (Bai et al. 2012; Zhang et al. 2013; Chen et al. 2014), rock physics methods for shales are primarily focusing on the modeling of shale anisotropy resulting from preferred orientations of clay minerals and pores in shale rock matrix (Vernik and Nur 1992; Hornby et al. 1994; Carcione 2000; Wenk et al. 2007; Bobko and Ulm 2008; Lonardelli et al. 2007; Ortega et al. 2009; Dewhurst et al. 2011; Slatt and Abousleiman 2011). Recently, the impact of kerogen on elastic properties and seismic responses of shales has received more interest. Carcione et al. (2011) and Vernik and Milovac (2011) researched and compared rock physics models for organic-rich shales. Zou et al. (2011) analyzed the  capacity  of  reservoirs  in  terms  of  nano-porosity in kerogen in shales. Zhu et al. (2012) improved rock physics models for shale gas reservoirs. Sayers (2013b) calculated the effect of kerogen on anisotropy of shales. Zhu et al. (2011) and Sayers (2013a) studied seismic AVO responses based on the proposed rock physics models for shale. Meanwhile, Sun et al. (2013) modeled seismic responses of shale gas reservoirs based on anisotropic wave equations. However, the effect of kerogen content and kerogen porosity on elastic properties and seismic responses of shale has not been well investigated. According to the observations from SEM images, kerogen plays a more significant role in elastic properties than ever expected due to its low density (Passey et al. 2010); moreover, hydrocarbon-filled pores in  such organic  matter  generated during different maturity levels will enhance the effect of kerogen. Therefore, key parameters for the characterization of organic-rich shales should include both kerogen content and kerogen porosity. In this study, our objective is to build a rock physics workflow for the organic-rich shales to quantify the effects of such two factors on elastic properties, and therefore on the seismic responses.

 

 

2 Microstructural model of shale

 

 

SEM images reveal the presence of a nano-porosity system contained within the organic matter (Passey et al. 2010). It is estimated that these pores comprise the majority of the total  porosity  space  and  may  be  hydrocarbon saturated during most of the thermal maturation processes. The schematics  in  Fig. 1  illustrate  how  5 wt%  (weight  percentage)  solid  kerogen  in  Fig. 1a  may  correspond  to 10 vol%  (volume  percentage)  solid  kerogen  in  Fig. 1b because the density of kerogen is about half that of average rock minerals, and then may eventually take up 20 vol% in a shale rock in Fig. 1c if 50 % of the organic matter volume is occupied by hydrocarbon-saturated pores. Therefore, a small amount of kerogen in weight percentage corresponds to a relevant higher volume percentage which has a significant impact on elastic properties and seismic responses of shales. The objective of this study is to build a rock physics model for organic-rich shales to quantify the effect of kerogen content and kerogen porosity.

Fig. 1  Schematics demonstrate 5 wt% solid kerogen in (a) corresponds to 10 vol% kerogen in (b) due to the lower density of kerogen compared to

Fig. 1  Schematics demonstrate 5 wt% solid kerogen in (a) corresponds to 10 vol% kerogen in (b) due to the lower density of kerogen compared to that of average minerals in the rock matrix, and the generation of hydrocarbon-filled pores during different maturity levels results in the expansion of the volumetric fraction of the mixture of kerogen and hydrocarbons and may take up 20 vol% if half of the spaces are occupied by pores in kerogen as shown in (c). (After Passey et al. 2010)

Figure 2  illustrates  the  evolution  of  solid  and  fluid constituents in a source rock associated with various maturity levels. For an immature source rock, kerogen has no pores generated inside (Scenario A). As the source rock becomes mature, hydrocarbon-filled pores are generated in organic matter (Scenario B). In addition, the kerogen content in source rock may be different (Scenario C), and as the source rock becomes more mature, more hydrocarbon-filled pores will be generated in organic matter (Scenario D). According to the above analysis, kerogen content and porosity associated with hydrocarbon-filled pores in kerogen are two important factors for the characterization of a source rock, so we define the two factors as K and φk, respectively, in this work.

Scenario A illustrates an immature source rock with no pores generated in kerogen. Scenario B demonstrates a mature source rock with hydrocarbon

Fig. 2  Schematics illustrate the evolution of solid and fluid constituents in a source rock associated with different maturity levels. Scenario A illustrates an immature source rock with no pores generated in kerogen. Scenario B demonstrates a mature source rock with hydrocarbon-filled pores generated in kerogen. In addition, the kerogen content K in a source rock may be different as shown in Scenario C, and hydrocarbon-filled porosity φk may also vary as shown in Scenario D.

3 Rock physics workflow for organic-rich shales

 

 

Figure 3 illustrates a rock physics workflow we built to qualify the effect of K and φk on elastic properties of the organic-rich shale. In the rock physics model, the mixture of kerogen and hydrocarbon-filled pores has non-zero shear modulus (Passey et al. 1990), and the elastic properties of such a mixture are calculated using the method proposed by Carcione  (2000) based on the  theory of  Kuster and Toksoz (1974). After that, the elastic properties of the shale consisting of clay and non-clay minerals, the mixture of kerogen and hydrocarbons, and fluid-saturated pores in the shale rock matrix are calculated using the self-consistent approximation (SCA) method given by Berryman (1980). The constructed rock physics model is based on isotropic assumption and focuses on quantifying the effect of kerogen on elastic properties of shales. The results model the elastic parameters of shales in the vertical direction (one- dimensional problem) and can be applied to analyze the relation between kerogen and elastic properties in a vertical well.

Effective theories are employed in the workflow. Allaboutshale.com

Fig. 3  A schematic illustrates the shale rock physics workflow to model the effect of kerogen content and kerogen porosity. Effective medium theories are employed in the workflow.

As indicated in Fig. 4, we consider that the kerogen/oil/gas/water mixture is composed of oil/gas/water bubbles embedded in a kerogen matrix. The saturations are Sk, So, Sg, and Sw for kerogen, oil, gas, and water, respectively, and we have Sk+So+Sg+Sw= 1. We define the kerogen-related porosity as φk = So+Sg+Sw, which is the proportion of the oil/gas/ water bubbles in the mixture. The bulk modulus Kogw  of the oil/gas/water mixture is obtained by using Wood’s equation

(Wood 1955):

where Ko, Kg, and Kw are the moduli of oil, gas, and water, and are calculated by

Allaboutshale.com

Fig. 4 A schematic indicates the mixture of kerogen, oil, gas, and water, and the relationship of the associated saturations.

Then, the stiffnesses of the mixtures of kerogen and gas/oil/water can be calculated by using the method of Kuster and Toksoz (1974):

where the superscript m indicates the mixture, Kk  and μk are the bulk and shear moduli of kerogen, and φk  is the kerogen porosity. Equations (3) and (4) are used for the solutions of c13  and c55, which are two components in the stiffness matrix cij  (i, j = 1, 2,…, 6), and c13 = c11-2c55  c11  for  P-wave  in  the  horizontal  direction,  and  c55  for S-wave in the vertical direction.

 

By solving Eqs. (3) and (4), bulk and shear moduli of the mixture  of kerogen and gas/oil/water can  be obtained by

The superscript m denotes the mixture of kerogen/oil/gas/water. Given the density of kerogen (ρk), oil (ρo), gas (ρg), and water (ρw), the density of the mixture is

After obtaining the elastic properties of the kerogen and gas/oil/water mixture, we employ the self-consistent approximation (SCA) method to calculate the bulk and shear moduli of the shale rock. The shale is composed of quartz, clay, carbonate, the mixture of kerogen and hydrocarbons, and fluid-saturated pores in the shale rock matrix. Elastic properties of the constituents and oil, gas, and water are given in Table 1 (Carcione et al. 2011; Mavko et al. 2009).

 

The SCA method estimates the self-consistent elasticmodulus  Ksc and μsc of rocks for a given n phases of mineralogy and pore space:

Each j indicates a phase of mineralogy or pore space with a corresponding volume fraction fj, and bulk (Kj) and shear (μj)  modulus. The factors β*j   and ξ*j  describe the geometry of an inclusion made of phase j within a back-ground medium (denoted with subscript b), and are given as follows:

The implementation of Eqs. (5)–(8) requires volumetric percentage, bulk and shear modulus, and aspect ratio for each inclusion, and the outputs are bulk and shear modulus of rocks. For each inclusion j, background medium b corresponds to the inclusion other than j. Equations (5) and (6) are coupled, and therefore need to be solved by a simultaneous iteration method. Equations (7) and (8) represent the geometries of pores with aspect ratio smaller than 1 (Mavko et al. 2009).

Table 1 Material properties (Carcione 2000; Mavko et al. 2009).  

4 The effect of K and φk on elastic and geomechanical properties

 

 

According to the observations and analysis by Passey et al. 1990, constituents of the organic-rich shale consist of clay, quartz, dolomite, hydrocarbon-saturated kerogen, and fluid-saturated pores in shale matrix. In the rock physics modeling, we set the mineralogical volumetric contents of clay and dolomite to 0.3 and 0.15, respectively, and the porosity associated with shale matrix is 0.05. We assume the contents of kerogen and quartz have a negative correlation, that is, an increase in kerogen content K corresponds to a decrease in quartz content. So, if K increases from 0 to 0.3, quartz content decreases from 0.5 to 0.2 correspondingly. Associated elastic properties are given in Table 1.

 

For the constituents in shales, in this study, n in Eqs. (5)–(8) corresponds to n = 5. We assume the pores in kerogen are totally gas saturated to imitate high maturity level, and the pores in shale matrix are water saturated. Another key factor is the aspect ratio of the pores in the shale matrix, and we set it as 0.1 according to the study on the Barnett Shale (Guo et al. 2013a, b). According to the work on shale rock physics by Carcione (2000), we assume spherical geometry of pores in kerogen.

 

Then based on the rock physics model in Fig. 3 and properties  in  Table 1,  we  calculate  elastic  and  geo-mechanical properties of the organic-rich shale along with the variations in kerogen content K and kerogen-related porosity φk. Figure 5a, b, and c illustrate the obtained P- and S-wave velocity Vp, and Vs, and density ρ of the shale for varied kerogen content K and kerogen porosity φk. We can see that the values of Vp, Vs, and q decrease significantly as K increases from 0 to 0.3 and φk from 0 to 0.5. For example, Vp has a value about 3370 km/s for K = 0.1 and φk = 0.1, and this value decreases to 2783 km/s for K = 0.2 and φk=0.2.

Allaboutshale.com

Fig. 5  Calculated templates showing a P-wave velocity Vp, b S-wave velocity Vs, and c Density ρ for the variations in kerogen content K and kerogen-related porosity φk in the shale

We also find the correlation between the effect of K and that of φk on elastic properties, which impact elastic properties of shale simultaneously. Due to low velocities and density, the increase in K decreases velocities and density, and the presence of φk enhances such impacts (as shown in Fig. 1). For K < 0.05, the effect of φk on the elastic properties is not obvious; for K > 0.05, the increase in φk significantly decreases velocities and density of shales.

 

Figure 6a and b illustrate the calculated Young’s modulus E and Poisson’s ratio ν for the same range of K and φk as those in Fig. 5 (Zong et al. 2012). The two geo-mechanical properties are critical for the evaluation of the brittleness index of shales, as higher E and lower v indicate higher potential for shales to be fractured during hydraulic stimulation (Rickman et al. 2008). In Fig. 6b, we find that in the range of 0 < K < 0.2, for each φk, the Poisson’s ratio v increases with K, while for each K, ν nearly keeps constant for varied μk. This may imply that ν is not sensitive to the gas-saturated porosity in kerogen.

Allaboutshale.com

Fig. 6 Calculated templates showing geo-mechanical properties a Young’s modulus E and b Poisson’s ratio ν for the variations in K and φk in the shale.

5 The effect of K and φk on seismic AVO responses

 

 

In Fig. 7, we demonstrate the seismic AVO responses resulting from the variations in K and φk. For the geological model shown in Fig. 7a, b illustrates how the variations in K and φk  affect the acoustic impedance Ip of the shale based on the rock physics model. We consider two cases as indicated by blue and red solid circles in Fig. 7b. The blue solid circle represents values of K and φk of 0.05 and 0.1, respectively, while the red solid circle corresponds to the values of 0.15 and 0.3.

 

The properties of the overlaid chalk are Vp = 4100 m/s, Vs = 2500 m/s, and ρ = 2800 kg/m3. We calculate AVO responses using numerical solutions of the Zoeppritz equations and display the results in Fig. 7c by the same colors for the cases in Fig. 7b. We observe significant differences in AVO responses resulting from the variations in K and φk of the shale. Reflection amplitudes are negative for normal incidence, and their absolute values decrease with increasing incidence angles, which corresponds to the fifth type AVO responses (Roger and Robert 2010). Meanwhile, normal incidence amplitudes and AVO gradients have relatively higher values for higher kerogen content and kerogen porosity for low wave impedance shale (in red).

Two cases with different properties are highlighted. c Seismic AVO responses corresponding to the two cases in (b), with the same color scheme.

Fig. 7 a The model in which a chalk layer overlays on a shale layer. b Calculated acoustic impedance Ip of the shale varying with K and φk. Two cases with different properties are highlighted. c Seismic AVO responses corresponding to the two cases in (b), with the same color scheme.

Figure 8 illustrates the calculated AVO intercept P and gradient G corresponding to the model in Fig. 7a for the variations in K and φk. In Fig. 8a, we can see that the values of intercept P are negative and its absolute values increase with increasing K and φk, which has similar trends as the velocities and density as shown in Fig. 5. In Fig. 8b, the AVO gradient G represents positive and increases with increasing K and φk. These predictable trends of AVO responses can be used for the characterization of the variations in K and φk.

Fig. 8 Templates illustrating a AVO intercept P and b gradient G for the variations in K and φk, corresponding to the geological model and acoustic impedance variations in Fig. 7a and b.

6 Conclusions

 

 

We have developed a rock physics model based on the effective medium theories for the characterization of the effects of kerogen content K and kerogen porosity φk on elastic and geo-mechanical properties in the organic-rich shale. The parameter φk  indicates the proportion of hydrocarbon-saturated pores generated within kerogen. Rock physics modeling results show that the increases in K and φk significantly reduce the values of Vp, Vs, and ρ and the effects of K and φk are correlated with each other. Due to low velocities  and  density, the  increase  in  K decreases velocities and density and the presence of φk  enhances such impacts. For the case of K < 0.05, in this study, the effect of φk on the elastic properties is not obvious, while for K > 0.05, the  increase  in  φk  significantly decreases velocities   and   density   of   shales.   In   the   range   of 0 < K < 0.2, Poisson’s ratio ν is not sensitive to the gas-saturated porosity in kerogen. AVO modeling reveals that for the model in this work, reflection amplitudes for normal incidence are negative and the corresponding absolute values decrease with increasing incidence angles, which represents the fifth type AVO responses. For increasing K and φk, the absolute values of intercept P and gradient G increase. The predictable trends in AVO responses can be used for the characterization of the variations in K and φk.

 

 

Acknowledgments

 

This work is supported by the National Natural Science Foundation of China under Grants U1262208 and the National Natural Science Foundation of China under Grants 41404090. We thank two anonymous reviewers for their constructive suggestions to improve the paper.

 

 

 

References

 

 

Bai JY, Song ZX, Su L, et al. Error analysis of shear-velocity prediction   by   the   Xu-White   model.   Chin   J   Geophys. 2012;55(2):589–95 (in Chinese).

 

Berryman JG. Long-wavelength propagation in composite elastic media. J Acoust Soc Am. 1980;68(6):1809–31.

 

Bobko C, Ulm FJ. The nano-mechanical morphology of shale. Mech Mater. 2008;40(4–5):318–37.

 

Carcione JM. A model for seismic velocity and attenuation in petroleum source rocks. Geophysics. 2000;65(4):1080–92.

 

Carcione  JM,  Helle  HB,  Avseth  P.  Source-rock  seismic-velocity models:  Gassmann  versus  Backus.  Geophysics.  2011;76(5): N37–45.

 

Chen HZ, Yin XY, Gao CG, et al. AVAZ inversion for fluid factor based on fracture anisotropic rock physics theory. Chin J Geophys. 2014;57(3):968–78 (in Chinese).

 

Chen P, Zhang MQ, Xu YZ, et al. The shale reservoir characteristic of Dalong Formation Upper Permian in Chaohu-Jingxian, Lower Yangtze area. Acta Petrologica Sinica. 2013a;29(8):2925–35 (in Chinese).

 

Chen WL, Zhou W, Luo P, et al. Analysis of the shale gas reservoir in the Lower Silurian Longmaxi Formation, Changxin 1 well, Southeast  Sichuan  Basin,  China.  Acta   Petrologica   Sinica. 2013b;29(3):1073–86 (in Chinese).

 

Cheng LX, Wang YJ, Chen HD, et al. Sedimentary and burial environment of black shales of Sinian to early Palaeozoic in upper  Yangtze  region.  Acta  Petrologica  Sinica.  2013;29(8): 2906–12 (in Chinese).

 

Dewhurst DN, Siggins AF, Sarout J, et al. Geomechanical and ultrasonic characterization of a Norwegian Sea shale. Geophysics. 2011;76(3):WA101–11.

 

Diao HY. Rock mechanical properties and brittleness evaluation of shale reservoir. Acta Petrologica Sinica. 2013;29(9):3300–6 (in Chinese).

 

Guo ZQ, Li XY, Chapman M, et al. Microstructure characterization and S-wave velocity prediction in the Barnett Shale formation. In:  75th EAGE  conference  &  exhibition,  extended  abstracts. 2013a. P06.

 

Guo ZQ, Li XY, Liu C, et al. A shale rock physics model for analysis of  brittleness  index,  mineralogy  and  porosity  in  the  Barnett Shale. J Geophys Eng. 2013b;10(2):025006. doi:10.1088/1742-2132/10/2/025006.

 

Hornby BE, Schwartz LM, Hudson JA. Anisotropic effective medium modeling  of  the  elastic  properties  of  shales.  Geophysics. 1994;59(10):1570–83.

 

Kuster GT, Toksoz MN. Velocity and attenuation of seismic waves in two-phase media, Part I: theoretical formulations. Geophysics. 1974;39(5):587–606.

 

Liu  SG, Ma WX, Luba  J, et  al.  Characteristics  of  the  shale  gas reservoir rocks in the Lower Silurian Longmaxi Formation, East Sichuan Basin, China.  Acta Petrologica Sinica. 2011;27(8):2239–52 (in Chinese).

 

Liu ZJ, Meng QT, Liu R, et al. Geochemical characteristics of oil shale of Eocene Jijuntun Formation and its geological significance, Fushun Basin. Acta Petrologica Sinica. 2009;25(10):2340–50 (in Chinese).

 

Lonardelli  I,  Wenk HR, Ren Y.  Preferred orientation  and elastic anisotropy in shales. Geophysics. 2007;72(2):D33–40.

 

Mavko G, Mukerji T, Dovrkin J. The rock physics handbook: tools for analysis of porous media. Cambridge: Cambridge University Press; 2009. p. 185–90.

 

Ortega JA, Ulm FJ, Abousleiman Y. The nanogranular acoustic signature of shale. Geophysics. 2009;74(3):D65–84.

 

Passey QR, Bohacs KM, Esch WL, et al. From oil-prone source rock to  gas-producing shale  reservoir—geologic and  petrophysical characterization of unconventional shale-gas reservoirs. SPE Conference  Paper. 2010. p. 131350.

 

Passey QR, Creaney S, Kulla JB, et al. A practical model for organic richness   from   porosity   and  resistivity   logs.   AAPG   Bull. 1990;74(12):1777–94.

 

Rickman R, Mullen M, Petre E, et al. A practical use of shale petrophysics for simulation design optimization: All shale plays are not clones of the Barnett Shale. SEP Conference Paper. 2008. p. 115258.

 

Roger AY, Robert DL. A comprehensive AVO classification. Lead Edge. 2010;22(10):1030–7.

 

Sayers CM. The effect of kerogen on the AVO response of organic- rich shales. Lead Edge. 2013a;32(12):1514–9.

 

Sayers  CM.  The  effect  of  kerogen  on  the  elastic  anisotropy  of organic-rich shales. Geophysics. 2013b;78(2):D65–74.

 

Slatt RM, Abousleiman Y. Merging sequence stratigraphy and geomechanics   for   unconventional  gas   shales.   Lead   Edge. 2011;30(3):274–82.

 

Sun WJ, Fu LT, Guan XZ, et al. A study on anisotropy of shale using seismic forward modeling in shale gas exploration. Chin J Geophys. 2013;56(3):961–70 (in Chinese).

 

Vernik L, Milovac J. Rock physics of organic shales. Lead Edge. 2011;30(3):318–23.

 

Vernik L, Nur A. Ultrasonic velocity and anisotropy of hydrocarbon source rocks. Geophysics. 1992;57(5):727–35.

 

Wang LB, Jiu K, Zeng WT, et al. Characteristics of Lower Cambrian marine black shales and evaluation of shale gas prospective area in Qianbei area, Upper Yangtze region. Acta Petrologica Sinica. 2013;29(9):3263–78 (in Chinese).

 

Wenk HR, Lonardelli I, Franz H, et al. Preferred orientation and elastic anisotropy of illite-rich shale. Geophysics. 2007;72(2): E69–75.

 

Wood AB. A textbook of sound. New York: Macmillan Co.; 1955. Zhang GZ, Chen HZ, Wang Q, et al.

 

Estimation of S-wave velocity and anisotropic parameters using fractured carbonate rock physics model. Chin J Geophys. 2013;56(5):1707–15 (in Chinese).

 

Zhu Y, Liu E, Martinez A, et al. Understanding geophysical responses of shale-gas plays. Lead Edge. 2011;30(3):332–8.

 

Zhu Y, Xu SY, Payne M, et al. Improved rock-physics model for shale gas reservoirs. In: 82nd annual international meeting, SEG, expanded abstracts. 2012. pp. 1–5.

 

Zong ZY, Yin XY, Zhang F, et al. Reflection coefficient equation and pre-stack seismic inversion with Young’s modulus and Poisson ratio. Chin J Geophys. 2012;55(11):3786–94 (in Chinese).

 

Zou CN, Zhu RK, Bai B, et al. First discovery of nano-pore throat in oil  and  gas reservoir in  China and  its  scientific value.  Acta Petrologica Sinica. 2011;27(6):1857–64 (in Chinese).

 

 

Contact:

 

Zhi-Qi Guo zhiqiguo@aliyun.com

 

Received: 24 July 2014 / Published online: 12 April 2015

 

 

Open  Access   This  article  is  distributed under  the  terms  of  the Creative Commons Attribution 4.0 International License (http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Fig. 1  Schematics demonstrate 5 wt% solid kerogen in (a) corresponds to 10 vol% kerogen in (b) due to the lower density of kerogen compared to
Scenario A illustrates an immature source rock with no pores generated in kerogen. Scenario B demonstrates a mature source rock with hydrocarbon
Effective theories are employed in the workflow. Allaboutshale.com
Allaboutshale.com
Allaboutshale.com
Allaboutshale.com
Two cases with different properties are highlighted. c Seismic AVO responses corresponding to the two cases in (b), with the same color scheme.
Fig. 1  Schematics demonstrate 5 wt% solid kerogen in (a) corresponds to 10 vol% kerogen in (b) due to the lower density of kerogen compared to
Scenario A illustrates an immature source rock with no pores generated in kerogen. Scenario B demonstrates a mature source rock with hydrocarbon
Effective theories are employed in the workflow. Allaboutshale.com
Allaboutshale.com
Allaboutshale.com
Allaboutshale.com
Two cases with different properties are highlighted. c Seismic AVO responses corresponding to the two cases in (b), with the same color scheme.
Fig. 1  Schematics demonstrate 5 wt% solid kerogen in (a) corresponds to 10 vol% kerogen in (b) due to the lower density of kerogen compared to
Scenario A illustrates an immature source rock with no pores generated in kerogen. Scenario B demonstrates a mature source rock with hydrocarbon
Effective theories are employed in the workflow. Allaboutshale.com
Allaboutshale.com
Allaboutshale.com
Allaboutshale.com
Two cases with different properties are highlighted. c Seismic AVO responses corresponding to the two cases in (b), with the same color scheme.
Fig. 1  Schematics demonstrate 5 wt% solid kerogen in (a) corresponds to 10 vol% kerogen in (b) due to the lower density of kerogen compared to
Scenario A illustrates an immature source rock with no pores generated in kerogen. Scenario B demonstrates a mature source rock with hydrocarbon
Effective theories are employed in the workflow. Allaboutshale.com
Allaboutshale.com
Allaboutshale.com
Allaboutshale.com
Two cases with different properties are highlighted. c Seismic AVO responses corresponding to the two cases in (b), with the same color scheme.

AllAboutShale.com